The Solutions Formula for Quadratic Equations
$$f(x) = 3x^2 + 8x - 8$$
$$\displaystyle g(x) = 2x^2 +2x +8$$
For what values of _x_ do the functions above have the same value?
Incorrect.
[[snippet]]
When _x_ is –3, the two functions do not have the same value.
$$\displaystyle f(-3) = 3(-3)^2 + 8(-3) - 8 = 27 - 24 - 8 = -5$$
$$\displaystyle g(-3) = 2(-3)^2 +2(-3) +8 = 18 - 6 + 8 = 20$$
$$\displaystyle 20 \neq -5$$
Incorrect.
[[snippet]]
If you __Reverse Plug In__ 8, the functions will not be equal.
$$\displaystyle f(8) = 3(8)^2 + 8(8) - 8 = 192 + 64 - 8 = 148$$
$$\displaystyle g(8) = 2(8)^2 +2(8) +8 = 128 + 16 + 8 = 152$$
$$\displaystyle 152 \neq 148$$
As a third option, you can __Reverse Plug In__ the choices and evaluate the functions to find the correct values.
$$\displaystyle f(2) = 3(2)^2 + 8(2) - 8 = 12 + 16 - 8 = 20$$
$$\displaystyle g(2) = 2(2)^2 +2(2) +8 = 20$$
$$\displaystyle f(-8) = 3(-8)^2 + 8(-8) - 8 = 192 - 64 - 8 = 120$$
$$\displaystyle g(-8) = 2(-8)^2 +2(-8) +8 = 128 - 16 + 8 = 120$$
Incorrect.
[[snippet]]
The two functions are not the same when you __Reverse Plug In__ _x_ = 3.
$$\displaystyle f(3) = 3(3)^2 + 8(3) - 8 = 27 + 24 - 8 = 43$$
$$\displaystyle g(3) = 2(3)^2 +2(3) +8 = 18 + 6 + 8 = 32$$
Incorrect.
[[snippet]]
If you __Reverse Plug In__ 4 for _x_, the two functions are not equal.
$$\displaystyle f(4) = 3(4)^2 + 8(4) - 8 = 72$$
$$\displaystyle g(4) = 2(4)^2 +2(4) +8 = 48 $$
Correct.
You can set the right side of both equations equal to one another.
$$\displaystyle 3x^2 + 8x - 8= 2x^2 +2x +8$$
Since you are dealing with quadratic equations, simplify the new equation to be equal to 0 and use the solutions formula for quadratic equations.
$$\displaystyle x^2 + 6x - 16 = 0$$
$$\displaystyle x_{1, 2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-6 \pm \sqrt{6^2 + 4(16}}{2}$$
$$\displaystyle x_{1, 2} = \frac{-6 \pm \sqrt{36 + 64}}{2} = \frac{-6 \pm \sqrt{100}}{2} = \frac{-6 \pm 10}{2}$$
$$\displaystyle x = 2, -8$$
Alternatively, you can factor the expression that is equal to 0.
$$\displaystyle x^2 + 6x - 16 = 0$$
$$\displaystyle (x - 2)(x + 8) = 0$$
$$\displaystyle x = 2, -8$$
_x_ = –3, –8
_x_ = –2, 8
_x_ = 2, –8
_x_ = 2, 3
_x_ = 2, 4
Continue
Continue