Powers: Basic Rules - Multiplying Powers with the Same Base

A cylinder is placed inside a cube so that it stands upright when the cube rests on one of its faces. If the volume of the cube is 16, what is the maximum possible volume of the cylinder that fits inside the cube as described?
Correct. [[snippet]] Now that you have the maximum height and radius, __Plug In__ $$\sqrt[3]{2}$$ for $$r$$ and $$2 \sqrt[3]{2}$$ for $$H$$. >$$V = \pi r^2\cdot H$$ >$$\ \ = \pi (\sqrt[3]{2})^2\cdot (2\sqrt[3]{2}) $$ Rewrite the roots as fractional exponents. >$$V= \pi \cdot 2^{\frac{2}{3}} \cdot 2\cdot2^{\frac{1}{3}}$$ Finally, simplify according to the rule for multiplying powers with the same base. >$$V= 2\pi\cdot 2^{\frac{2}{3}+\frac{1}{3}}$$ >$$\ \ = 2\pi\cdot 2^1$$ >$$\ \ = 4\pi$$
Incorrect. [[snippet]]
$$ \frac{16}{\pi}$$
$$2\pi$$
$$8$$
$$4\pi$$
$$8\pi$$

The quickest way to get into your dream MBA

Adaptive learning technology

5000+ practice questions

7 simulation exams

Industry-Leading Score Guarantee

Save 100+ hours of your life

iOS and Android apps

Tablet device with “GMAT Prep | Bloomberg Exam Prep” app