Fractions: Overview

If $$13 < 7x + 1 < 25$$, how many integer values of $$x$$ are there?
Correct. [[Snippet]] Subtract 1 from the inequality to isolate $$7x$$. >$$13 - 1 < 7x + 1 - 1 < 25 - 1$$ >$$12 < 7x < 24$$ Divide the inequality by 7 to isolate $$x$$. >$$\frac{12}{7} < \frac{7x}{7} < \frac{24}{7}$$ >$$\frac{12}{7} < x < \frac{24}{7}$$ Based on this, $$x$$ is more than 1 ($$\frac{7}{7} = 1$$, so $$\frac{12}{7}$$ is greater) and less than 4 ($$\frac{28}{7}=4$$, so $$\frac{24}{7}$$ is smaller). In other words, the integer values of $$x$$ are 2 and 3. Hence, there are two possible integer values for $$x$$.
Incorrect. [[snippet]] Carefully check your calculations.
Incorrect. [[snippet]] Carefully check your work.
Incorrect. [[snippet]] Solve the given inequality for $$x$$.
Incorrect. [[snippet]] You need to solve the inequality $$13 < 7x + 1 < 25$$ for $$x$$.
1
2
3
4
5

The quickest way to get into your dream MBA

Adaptive learning technology

5000+ practice questions

7 simulation exams

Industry-Leading Score Guarantee

Save 100+ hours of your life

iOS and Android apps

Tablet device with “GMAT Prep | Bloomberg Exam Prep” app