We cover every section of the GMAT with in-depth lessons, 5000+ practice questions and realistic practice tests.

Up to 90+ points GMAT score improvement guarantee

The best guarantee you’ll find

Our Premium and Ultimate plans guarantee up to 90+ points score increase or your money back.

Master each section of the test

Comprehensive GMAT prep

We cover every section of the GMAT with in-depth lessons, 5000+ practice questions and realistic practice tests.

Schedule-free studying

Learn on the go

Study whenever and wherever you want with our iOS and Android mobile apps.

Data Sufficiency: Plugging into Yes/No Data Sufficiency

If \$\$a\$\$ and \$\$b\$\$ are positive integers, is \$\$ab \lt 6\$\$? >(1) \$\$1 \lt a + b \lt 7\$\$ >(2) \$\$ab = a + b\$\$
Incorrect. [[snippet]] Stat (1): If you use \$\$a=1\$\$ and \$\$b=2\$\$, then \$\$ab \lt 6\$\$. >\$\$1 \lt a + b \lt 7\$\$ >\$\$1 \lt 3 \lt 7\$\$. If you use \$\$a=2\$\$ and \$\$b=3\$\$, then \$\$ab = 6\$\$. >\$\$ 1 \lt a+b \lt 7\$\$ >\$\$1 \lt 5 \lt 7\$\$. If you use \$\$a=2\$\$ and \$\$b=4\$\$, then \$\$ab \gt 6\$\$. >\$\$1 \lt a + b \lt 7\$\$ >\$\$1 \lt 6 \lt 7\$\$. No definite answer, so Stat.(1) → IS → BCE.
Correct. [[snippet]] Stat (1): If you use \$\$a=1\$\$ and \$\$b=2\$\$, then \$\$ab \lt 6\$\$. >\$\$1 \lt a + b \lt 7\$\$ >\$\$1 \lt 3 \lt 7\$\$. If you use \$\$a=2\$\$ and \$\$b=3\$\$, then \$\$ab = 6\$\$. >\$\$ 1 \lt a+b \lt 7\$\$ >\$\$1 \lt 5 \lt 7\$\$. If you use \$\$a=2\$\$ and \$\$b=4\$\$, then \$\$ab \gt 6\$\$. >\$\$1 \lt a + b \lt 7\$\$ >\$\$1 \lt 6 \lt 7\$\$. No definite answer, so Stat.(1) → IS → BCE. Stat (2): This statement is >\$\$ab = a + b\$\$. The only possible pair of positive integers that satisfies this equation is \$\$a=2\$\$ and \$\$b=2\$\$: >\$\$(2)(2) = 2 + 2\$\$. Based on this, \$\$ab \lt 6\$\$. Thus, there is a definite answer, so Stat.(2) → S → B.
Incorrect. [[snippet]] Stat (2): This statement is >\$\$ab = a + b\$\$. The only possible pair of positive integers that satisfies this equation is \$\$a=2\$\$ and \$\$b=2\$\$: >\$\$(2)(2) = 2 + 2\$\$. Based on this, \$\$ab \lt 6\$\$. Thus, there is a definite answer, so Stat.(2) → S.
Incorrect. [[snippet]] Stat (1): If you use \$\$a=1\$\$ and \$\$b=2\$\$, then \$\$ab \lt 6\$\$. >\$\$1 \lt a + b \lt 7\$\$ >\$\$1 \lt 3 \lt 7\$\$. If you use \$\$a=2\$\$ and \$\$b=3\$\$, then \$\$ab = 6\$\$. >\$\$ 1 \lt a+b \lt 7\$\$ >\$\$1 \lt 5 \lt 7\$\$. If you use \$\$a=2\$\$ and \$\$b=4\$\$, then \$\$ab \gt 6\$\$. >\$\$1 \lt a + b \lt 7\$\$ >\$\$1 \lt 6 \lt 7\$\$. No definite answer, so Stat.(1) → IS → BCE.
Incorrect. [[snippet]] Stat (2): This statement is >\$\$ab = a + b\$\$. The only possible pair of positive integers that satisfies this equation is \$\$a=2\$\$ and \$\$b=2\$\$: >\$\$(2)(2) = 2 + 2\$\$. Based on this, \$\$ab \lt 6\$\$. Thus, there is a definite answer, so Stat.(2) → S.
Statement (1) ALONE is sufficient, but Statement (2) alone is not sufficient to answer the question asked.
Statement (2) ALONE is sufficient, but Statement (1) alone is not sufficient to answer the question asked.
BOTH Statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient to answer the question asked.