If $$AC = AB$$, what is the value of $$x^\circ$$?

Incorrect.
[[snippet]]
It's a trap! Did you take angle $$ABC$$ to be equal to angle $$BAC$$ ($$x^\circ$$)? Look at the triangle carefully: $$AB = AC$$ so $$\angle ABC = \angle ACB$$.

Incorrect.
[[snippet]]

Incorrect.
[[snippet]]

Correct.
[[snippet]]
Since $$AB = AC$$, $$\angle ABC = \angle ACB = 58^\circ$$. Based on this,
> $$x^\circ + 58^\circ + 58^\circ = 180^\circ$$
> $$x^\circ = 180^\circ - 2(58^\circ) = 64^\circ$$.

Incorrect.
[[snippet]]
Did you take angle $$ACB$$ to be equal to angle $$BAC$$? Look at the triangle carefully: $$AB = AC$$ so $$\angle ABC = \angle ACB$$.

53º

58º

61º

64º

66º