The red kangaroo hops across 120 meters in five seconds. What is the speed of the kangaroo in kilometers per minute?

Incorrect.
[[snippet]]

Incorrect.
[[snippet]]

Incorrect.
You must have missed a decimal somewhere . . .
[[snippet]]

Correct.
First of all, assign each of the values in the question to the
appropriate cell in the speed table. Then, convert the units using the **replace with an equivalent** principle.
**Replace** the word meters with the **equivalent** $$\times \frac{1}{1{,}000}$$ kilometers.
**Go on to replace** the word seconds with the **equivalent** $$\times \frac{1}{60}$$ minutes.

Simplifying the time and distance gives $$\frac{5}{60} = \frac{1}{12}$$ minutes and $$\frac{120}{1{,}000} = \frac{3}{25}$$ kilometers.
Finally, calculate the speed.
>$$\displaystyle \text{Speed} = \frac{\text{Distance}}{\text{Time}}$$
>>$$\displaystyle = \frac{\frac{3}{25} \mbox{ kilometers}}{\frac{1}{12} \mbox{minutes}}$$
>>$$\displaystyle = \frac{3}{25} \times \frac{12}{1} \mbox{ kilometers per minute}$$
>>$$\displaystyle = \frac{36}{25} \mbox{ kilometers per minute}$$
>>$$\displaystyle = 1.44 \mbox{ kilometers per minute}$$

speed | time | distance |
---|---|---|

? | $$5$$ seconds |
$$120$$ meters |

? | $$5\times\frac{1}{60}$$ minutes | $$120\times \frac{1}{1{,}000}$$ kilometers |

Incorrect.
[[snippet]]

1.25

1.44

4

12.5

14.4